Math 323 - Formal Mathematical Reasoning and Writing
 Problem Session
 Wednesday, 2/4/15

1. Each of the following items asks you to give either a definition or a statement of a theorem. Please give mathematically precise statements.
(a) The integers \mathbb{Z} has trichotomy. State precisely what this means.
(b) State what it means for a number $C \in \mathbb{Z}$ to be a multiplicative identity for \mathbb{Z}.
(c) Give a precise statement of the Division Algorithm for \mathbb{Z}.
2. Prove that $(n+1)!\geq 2^{n}$ for any integer $n \geq 1$.
3. Prove that for every integer x, if x is odd then there exists an integer y such that $x^{2}=4 y+1$. (For a slightly more challenging problem, change the ' 4 ' to an ' 8 '.)
4. ${ }^{1}$ Decide whether the following statements are true or false. If the statement is true, prove it. If the statement is false, give a counterexample to show that it is false.
(a) For all integers x, y, if $x y>0$ then $x^{2}+y^{2}>0$.
(b) For all integers x, y, if $x^{2}+y^{2}>0$ then $x y>0$.

If you've finished, here's a bonus problem!
Prove that for every integer $n \geq 0$, there exists an integer A such that $9^{n}-1=8 A$.

[^0]
[^0]: ${ }^{1}$ One of these is easy. The other one is hard.

